

Ruthenium-Catalyzed Cycloaddition of Propargylic Alcohols with Phenol Derivatives via Allenylidene Intermediates: Catalytic Use of the Allenylidene Ligand as the C₃ Unit

Yoshiaki Nishibayashi,[†] Youichi Inada,[†] Masanobu Hidai,^{*,‡} and Sakae Uemura^{*†}

Department of Energy and Hydrocarbon Chemistry, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan, and Department of Materials Science and Technology, Science University of Tokyo, Noda, Chiba 278-8510, Japan

Received March 11, 2002

Transition metal allenylidene complexes (M=C=C=CR₂), which belong to a series of unsaturated carbene derivatives, have attracted a great deal of attention in recent years as a new type of organometallic intermediate.¹ Although remarkable developments of the reactivity of allenylidene complexes have been attained,^{1,2} only a few examples of catalytic reactions via allenylidene intermediates have been reported until now.3-5 As regards the catalytic activity of allenylidene complexes, we have recently disclosed the ruthenium-catalyzed propargylic substitution reactions of propargylic alcohols⁶ with various heteroatom- and carboncentered nucleophiles to afford the corresponding products in high yields with complete regioselectivities.⁷ Interestingly, the reactions are only catalyzed by thiolate-bridged diruthenium complexes8 such as $[Cp*RuCl(\mu_2-SR)_2RuCp*Cl]$ ($Cp* = \eta^5-C_5Me_5$; R = Me (1a)), but not by monomeric ruthenium complexes. A key step of these novel reactions is the selective attack of nucleophiles on the electrophilic C_{ν} atom in the allenylidene ligand at the thiolatebridged diruthenium complexes.7

Some theoretical studies of the allenylidene complexes indicate that the C_{α} and C_{γ} carbon atoms of allenylidene ligands are the electrophilic centers, while the C_{β} carbon atom is a nucleophilic center.⁹ In fact, a variety of nucleophiles stoichiometrically attack either the C_{α} or C_{γ} carbon atom of allenylidene ligands to afford Fischer-type carbenes or alkynyl complexes, respectively.¹⁰ During our study, we have now found the novel unprecedented cycloaddition of propargylic alcohols with phenol derivatives catalyzed by **1** to afford naphthopyrans and benzopyrans with potential use for photochromic materials. In this reaction, both of the electrophilic C_{α} and C_{γ} carbon atoms in the allenylidene ligands are subjected to attack by nucleophiles (Chart 1). Preliminary results are described here.

Chart 1

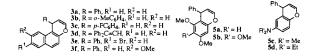

Treatment of 1-phenyl-2-propyn-1-ol (**2a**) and 2-naphthol in ClCH₂CH₂Cl in the presence of $1a^{11}$ (5 mol %) and NH₄BF₄ (10 mol %) at 60 °C for 1 h afforded 1-phenyl-1*H*-naphtho[2,1-*b*]pyran (**3a**) in 80% isolated (83% GLC) yield (Table 1; run 1). Neither other products nor regioisomers of **3a** were detected by GLC and ¹H NMR. The reaction proceeded even at room temperature, but a prolonged reaction time was required to produce **3a**. When 1-naphthol was used in place of 2-naphthol, a mixture of unidentified products was obtained.

Table 1. Cycloaddition of Propargylic Alcohols with Phenol Derivatives Catalyzed by [Cp*RuCl(μ_2 -SMe)₂RuCp*Cl] (**1a**)^a

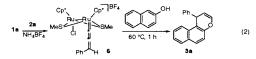
$R_{H_{2}} + C_{H_{2}} + C_{H_{3}} + C_{H_{4}} + C_{H$			
run	propargylic alcohol	phenol derivative	yield of product, %b
1	2a, R = Ph	2-naphthol	3a, 80 (83)°
2	$2\mathbf{b}, \mathbf{R} = o - MeC_6H_4$	2-naphthol	3b, 64
23	$2c, R = p - FC_6 H_4$	2-naphthol	3c, 81
4	$2d, R = Ph_2C = CH$	2-naphthol	3d , 69
4 5	2a, R = Ph	6-bromo-2-naphthol	3e, 79
6 ^d	2a, R = Ph	7-methoxy-2-naphthol	3f, 97
7 ^{d.e}	2a, R = Ph	3,5-dimethoxyphenol (4a)	5a, 96
8 ^{d.e}	2a, R = Ph	3,4,5-trimethoxyphenol (4b)	5b , 93
9 ^{d.e}	2a, R = Ph	4-(dimethylamino)phenol (4c)	5c, 27
10 ^f	2a, R = Ph	4-(diethylamino)phenol (4d)	5d, 50
11 ^{d.g}	2a, R = Ph	3,4,5-trimethylphenol (4e)	5e, 50

^{*a*} All the reactions of **2** (0.60 mmol) with phenol derivative (3.00 mmol) were carried out in the presence of **1a** (0.03 mmol) and NH₄BF₄ (0.06 mmol) in ClCH₂CH₂Cl (15–30 mL) at 60 °C for 1 h. ^{*b*} Isolated yield. ^{*c*} GLC yield. ^{*d*} For 3 h. ^{*e*} 10 mol % of **1a** was used. ^{*f*} 20 mol % of **1a** was used. ^{*g*} For 19 h.

Reactions of various propargylic alcohols have been carried out in the presence of **1a**. Thus, the condensation of 1-aryl- and 1-alkenyl-substituted propargylic alcohols (2b-d) with 2-naphthol at 60 °C for 1 h proceeded smoothly to afford the corresponding 1-substituted 1*H*-naphtho[2,1-*b*]pyrans (3b-d) in moderate to high

yields (Table 1; runs 2–4). Unfortunately, the reaction of 1,1-diarylsubstituted propargylic alcohols such as $Ph_2C(OH)C\equiv CH$ did not proceed even after a prolonged reaction time (72 h), probably due to the steric bulkiness of two phenyl groups. 6-Bromo-2-naphthol and 7-methoxy-2-naphthol similarly reacted with **2a** to afford similar adducts (**3e** and **3f**) in high yields with complete selectivities (Table 1; runs 5 and 6).

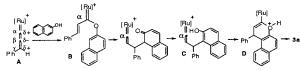
The reactions of **2a** with 3,5-dimethoxyphenol (**4a**) and 3,4,5trimethoxyphenol (**4b**) gave the corresponding 4*H*-1-benzopyrans (**5a** and **5b**) in excellent yields (Table 1, runs 7 and 8). The molecular structures of **3c** and **5a** were unambiguously clarified by X-ray analysis. When some 4-aminophenols (**4c** and **4d**) were used, the formation of the corresponding pyrans (**5c** and **5d**) was observed in moderate yields (Table 1, runs 9 and 10). A mixture of 4*H*-1-benzopyran (**5e**) and propargylic ether (**5f**) was formed in a 1 to 2 ratio by the reaction of **2a** with 3,4,5-trimethylphenol (**4e**) for 3 h (eq 1), but only **5e** was obtained (50% yield) by prolonging the reaction time to 19 h (Table 1, run 11). It is well-known that Claisen rearrangement of **5f** afforded not **5e** but **5g**. In fact, the *p*-TsOH-catalyzed reaction of 1,1-diarylpropargylic alcohols with


^{*} Corresponding author. E-mail: uemura@scl.kyoto-u.ac.jp.

 [†] Kyoto University.
 [‡] Science University of Tokyo.

2-naphthol in the solid state has been reported recently, where only 3,3-diaryl-3*H*-naphtho[2,1-*b*]pyrans, namely the regioisomers of 1,1-diaryl-1*H*-naphtho[2,1-*b*]pyrans (**3**), were obtained in only low to moderate yields via Claisen rearrangement of the initially produced propargylic ethers.¹² This result indicates that the novel reaction presented in this paper did not proceed via Claisen rearrangement of propargylic ethers. We consider that **5f** is transformed into **5e** via allenylidene intermediates (vide infra).

Starting propargylic alcohol (2a) was completely recovered in the reaction of 2a with 1,2,3-trimethoxy- and 1,2,3-trimethylbenzenes. These results show that no propargylation of aromatic compounds occurs under the same reaction conditions. It is noteworthy that the cycloaddition of propargylic alcohols proceeds only when phenols bearing electron-releasing groups are employed. This is in contrast to the propargylic substitution reaction of 2a where simple phenols are used to produce the corresponding phenyl propargylic ether.^{7a}


Treatment of the allenylidene complex (6), which could be prepared from the reaction of **1a** with 1 equiv of **2a** in the presence of NH₄BF₄ in tetrahydrofuran (THF) at room temperature for 30 min,^{7b} with 5 equiv of 2-naphthol in ClCH₂CH₂Cl at 60 °C for 1 h led to the formation of **3a** in quantitative yield (eq 2). Furthermore,

reaction of 2a with 2-naphthol in the presence of 5 mol % of 6 at 60 °C for 1 h afforded 3a in 74% yield. These results indicate that this catalytic reaction proceeds via allenylidene complexes such as 6.

Because the C_{α} atom of the allenylidene complexes is favorably attacked by nucleophiles,¹³ the catalytic formation of **3a** may occur by the reaction pathways shown in Scheme 1. Thus, the initial attack of the naphthol oxygen to the C_{α} atom of **A** results in the formation of a carbene complex **B**, which subsequently leads to a vinylidene complex **C** via Claisen rearrangement of **B**. Complex **C** is transformed into an alkenyl complex **D** by nucleophilic attack of the oxygen atom of the hydroxy group to the C_{α} atom of **C**. However, the possibility of a nucleophilic attack of the carbon atom at position 1 of 2-naphthol to the C_{γ} atom of the allenylidene complexes may not be excluded. Further investigations to elucidate the detailed reaction mechanism are currently in progress.

Scheme 1

Esteruelas and co-workers have already reported stoichiometric reactions of allenylidene complexes with organic molecules containg two nucleophilic heteroatoms such as pyrazole and 2-aminopyridine to give the corresponding alkenyl complexes with heterocyclic ligands,^{14,15} but the cycloaddition described here is the first example of the use of the allenylidene ligands as a C_3 unit in the catalytic process.

In summary, we have found a novel ruthenium-catalyzed cycloaddition of propargylic alcohols with 2-naphthols and phenols bearing electron-donating groups to afford the corresponding 1H-naphtho[2,1-*b*]pyrans and 4H-1-benzopyrans, respectively, in moderate to excellent yields with a complete regioselectivity. This catalytic reaction provides a simple and efficient one-pot synthetic method for a new type of skeleton of photochromic naphthopyrans and benzopyrans.¹⁶

Acknowledgment. This work was supported by a Grant-in-Aid for Scientific Research (Nos. 13305062 and 12750747) from the Ministry of Education, Science, Sports, and Culture of Japan, and the JSPS FY 2001 "Research for the Future Program".

Supporting Information Available: Experimental procedures and spectral data for all of the new compounds (**3** and **5**), and crystal-lographic data for **3c** and **5a** (CIF). This material is available free of charge via the Internet at http://pubs.acs.org.

References

- For recent reviews, see: (a) Werner, H. Chem. Commun. 1997, 903. (b) Touchard, D.; Dixneuf, P. H. Coord. Chem. Rev. 1998, 178–180, 409.
 (c) Bruce, M. I. Chem. Rev. 1998, 98, 2797. (d) Cadierno, V.; Gamasa, M. P.; Gimeno, J. Eur. J. Inorg. Chem. 2001, 571.
- M. P.; Gimeno, J. *Eur. J. Inorg. Chem.* 2001, 571.
 (2) For a recent example, see: Cadierno, V.; Conejero, S.; Gamasa, M. P.; Gimeno, J.; Rodríguez, M. A. *Organometallics* 2002, 21, 203 and references therein.
- (a) Trost, B. M.; Flygare, J. A. J. Am. Chem. Soc. 1992, 114, 5476. (b) Trost, B. M.; Flygare, J. A. Tetrahedron Lett. 1994, 35, 4059.
- Maddock, S. M.; Finn, M. G. Angew. Chem., Int. Ed. 2001, 40, 2138.
 Quite recently, some groups have reported the ring closing metathesis catalyzed by allenylidene ruthenium complexes, but the intermediates are carbene complexes: (a) Fürstner, A.; Liebl, M.; Lehmann, C. W.; Picquet, M.; Kunz, R.; Bruneau, C.; Touchard, D.; Dixneuf, P. H. Chem. Eur. J. 2000, 6, 1847. (b) Harlow, K. J.; Hill, A. F.; Wilton-Ely, J. D. E. T. J. Chem. Soc., Dalton Trans. 1999, 285. (c) Jafarpour, L.; Huang, J.; Stevens, E. D.; Nolan, S. P. Organometallics 1999, 18, 3760.
- (6) For recent examples of ruthenium-catalyzed reactions with propargylic alcohols, see: (a) Dérien, S.; Ropartz, L.; Paih, J. L.; Dixneuf, P. H. J. Org. Chem. 1999, 64, 3524. (b) Pail, J. L.; Dérien, S.; Bruneau, C.; Demerseman, B.; Toupet, L.; Dixneuf, P. H. Angew. Chem., Int. Ed. 2001, 40, 2912. (c) Trost, B. M.; Rudd, M. T. J. Am. Chem. Soc. 2001, 123, 8862.
- (7) (a) Nishibayashi, Y.; Wakiji, I.; Hidai, M. J. Am. Chem. Soc. 2000, 122, 11019. (b) Nishibayashi, Y.; Wakiji, I.; Ishii, Y.; Uemura, S.; Hidai, M. J. Am. Chem. Soc. 2001, 123, 3393.
- (8) The thiolate-bridged diruthenium complexes have been found to provide unique bimetallic reaction sites for activation and transformation of various terminal alkynes, see: Nishibayashi, Y.; Yamanashi, M.; Wakiji, I.; Hidai, M. Angew. Chem., Int. Ed. 2000, 39, 2909 and references therein.
- (9) (a) Cadierno, V.; Gamasa, M. P.; Gimeno, J.; González-Cueva, M.; Lastra, E.; Borge, J.; Garcîa-Granda, S.; Pérez-Carreño, E. Organometallics 1996, 15, 2137. (b) Esteruelas, M. A.; Gómez, A. V.; López, A. M.; Modrego, J.; Oñate, E. Organometallics 1997, 16, 5826. (c) Baya, M.; Crochet, P.; Esteruelas, M. A.; Gutiérrez-Puebla, E.; López, A. M.; Modrego, J.; Oñate, E.; Vela, N. Organometallics 2000, 19, 2585.
- E.; Vela, N. Organometallics 2000, 19, 2585.
 (10) For recent examples, see: (a) Touchard, D.; Haquette, P.; Daridor, A.; Romero, A.; Dixneuf, P. H. Organometallics 1998, 17, 3844. (b) Bianchini, C.; Peruzzini, M.; Zanobini, F.; Lopez, C.; Rios, I.; Romerosa, A. Chem. Commun. 1999, 443. (c) Bruce, M. I.; Low, P. J.; Tiekink, E. R. T. J. Organomet. Chem. 1999, 572, 3. (d) Laubender, M.; Werner, H. Chem. Eur. J. 1999, 5, 2937. (e) Bustelo, E.; Tenorio, M. J.; Puerta, M. C.; Valerga, P. Organometallics 1999, 18, 4563. (f) Cadierno, V.; Conejero, S.; Gamasa, M. P.; Gimeno, J.; Pérez-Carreño, E.; García-Granda, S. Organometallics 2001, 20, 3175.
- (11) Other di- and monoruthenium complexes except for 1 were ineffective for this cycloaddition. See Supporting Information for experimental details.
- (12) Tanaka, K.; Aoki, H.; Hosonii, H.; Ohba, S. Org. Lett. 2000, 2, 2133.
 (13) Pilette, D.; Ouzzine, K.; Bozec, H. L.; Dixneuf, P. H. Organometallics 1992, 11, 809.
- (14) (a) Esteruelas, M. A.; Gómez, A. V.; López, A. M.; Oñate, E. Organometallics 1998, 17, 3567. (b) Bernad, D. J.; Esteruelas, M. A.; López, A. M.; Oliván, M.; Oñate, E.; Puerta, M. C.; Valerga, P. Organometallics 2000, 19, 4327.
- (15) Although we attempted the reactions of **2a** with pyrazole and 2-aminopyridine in the presence of **1a**, no catalytic reaction proceeded.
- (16) For recent examples, see: (a) Uchida, M.; Irie, M. J. Am. Chem. Soc. 1993, 115, 6442. (b) Celani, P.; Bernardi, F.; Olivucci, M.; Robb, M. A. J. Am. Chem. Soc. 1997, 119, 10815.

JA026168X